
Dimensional Regularisation

In the intermediate stages of the calculation we must introduce some regularisation procedure to control

these divergences. The most effective regulator is the method of dimensional regularisation which continues

the dimension of space-time to d = 4 − 2ε dimensions [1]. This method of regularisation has the advantage

that the Ward Identities of the theory are preserved at all stages of the calculation. Integrals over loop momenta

are performed in d dimensions with the help of the following formula,∫
ddk

(2π)d

(−k2)r[
− k2 + C − iε

]m =

i(4π)ε

16π2 [C − iε]2+r−m−ε Γ(r + d/2)

Γ(d/2)

Γ(m− r − 2 + ε)

Γ(m)
. (1)

To demonstrate Eq. (1), we first perform a Wick rotation of the k0 contour anti-clockwise. This is dictated by

the iε prescription, since for real C the poles coming from the denominator of Eq. (1) lie in the second and

fourth quadrant of the k0 complex plane as shown in Fig. 1. Thus by anti-clockwise rotation we encounter

no poles. After rotation by an angle π/2, the k0 integral runs along the imaginary axis in the k0 plane,

(−i∞ < k0 < i∞). In order to deal only with real quantities we make the substitution k0 = iκd, kj = κj for

all j 6= 0 and introduce |κ| =
√

κ2
1 + κ2

2 . . . + κ2
d. We obtain a d-dimensional Euclidean integral which may

be written as, ∫
ddκ f(κ2) =

∫
d|κ| f(κ2) |κ|d−1 sind−2 θd−1 sind−3 θd−2 . . .

× sin θ2 dθd−1dθd−2 . . . dθ2dθ1. (2)

This formula is best proved by induction. The range of the angular integrals is 0 ≤ θi ≤ π except for



0 ≤ θ1 ≤ 2π. The angular integrations, which only give an overall factor, can be performed using∫ π

0
dθ sind θ =

√
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We therefore find that the left hand side of Eq. (1) can be written as,

2i
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d/2

) ∫ ∞

0
d|κ| |κ|d+2r−1[

κ2 + C
]m . (4)

This last integral can be reduced to a Beta function, (see Table 2)∫ ∞

0
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) Cs/2+1/2−m (5)

which demonstrates Eq. (1).

Feynman parameter identities are also useful; we have

1

Aα Bβ · · ·Eε
=

Γ(α + β + · · · ε)
Γ(α)Γ(β) · · ·Γ(ε)

×
∫ 1

0
dx dy · · · dz δ(1− x− y · · · − z)

× xα−1 yβ−1 · · · zε−1

(Ax + By + · · ·+ Ez)α+β+···+ε
(6)

When calculating the two, three and four point functions of the quark, gluon and ghost fields the ultraviolet

divergences of the theory appear as poles in ε. In the mimimal subtraction (MS) renormalisation scheme [1]

one chooses the various Z’s of the theory in such a way that the poles are all cancelled. In one loop this leads

to the renormalisation constants given in Table 3.

Note that the renormalisation constants depend on the gauge parameter. The scheme is called minimal

because the renormalisation constants of the theory contain only the pole parts.



γµγν + γνγµ = 2 gµνI

γµγµ = gµ
µ I = d I

γµγαγµ = −2 (1− ε) γα

γµγαγβγµ = 4 gαβI− 2ε γαγβ

γµγαγβγργµ = −2 γργβγα + 2ε γαγβγρ

Tr I = 4

Tr γµγν = 4 gµν

Tr γµγνγργσ = 4
(
gµνgρσ + gνρgµσ − gµρgνσ

)
Table 1: Gamma matrix identities in d = 4− 2ε dimensions.
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Γ(z) =
∫ ∞

0 dt e−ttz−1

zΓ(z) = Γ(z + 1)

Γ(2z) = 22z−1
√

π
Γ(z)Γ(z + 1

2)

Γ(n + 1) = n! for n a positive integer

Γ(1) = 1, Γ(1
2) =

√
π

Γ ′(1) = −γE, γE ≈ 0.577215

Γ ′′(1) = γ2
E + π2

6

B(a, b) =
∫ 1

0 dx xa−1(1− x)b−1

B(a, b) =
∫ ∞

0 dt ta−1

(1+t)a+b for Re a, b > 0

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Table 2: Useful properties of the Γ and related functions
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Table 3: Minimal subtraction renormalisation constants in a general covariant gauge at one loop order.



Figure 1: Wick rotation in the complex plane


