Notation

We work in the Bjorken-Drell metric so that [> = [2 — [3 — I3 — [3. The definition of the integrals are as

follows
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where 1 = p1,q2 = p1 +Dp2,93 = p1 +p2 +p3and gy = g4 = 0.

Near four dimensions we use D = 4 — 2¢. The symbol ¢ is thus equal to 4=2. (For clarity the small

1imaginary part which fixes the analytic continuations is specified by +:<). The overall constant which occurs
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in D-dimensional integrals is,
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Various useful formula for dimensional regularization are given here.


http://qcdloop.fnal.gov/dimreg.pdf

The final results are given in terms of logarithms and dilogarithms. The logarithm is defined to have a cut

along the negative real axis. The rule for the logarithm of a product is

In(ab) = Ina+Inb+n(a,b)
n(a,b) = 2mi[0(—Im(a))f(—Im(b))0(Im(ab)) — O(Im(a))d(Im(b))0(—Im(ab))]

So that

In(ab) = Ina+Inb, if Im(a)and Im(b) have different signs.

a

hl(g) = Ina —1Inb, if Im(a) and Im(b) have the same sign.

The dilogarithm is defined as
z ] 2 3
Lis(z) :—/0 il a) = T+ oy + 5+ whenle] < 1

A number of the most commonly useful dilogarithm identities are given here.
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