Six-dimensional box integrals

From the Feynman parametrized result for the D = 4 — 2¢ integral
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We can obtain the corresponding result close to six dimensions, by shifting e — € — 1 in the integral. (The

overall factors are chosen for convenience).

[{D 6— 26}(

al‘an;j — 1€

2 2 2)_M2€F(n_3+6)/()1 d4ai{ o(1—> ai)

p17p27p37p47 (pl +p2) (p2 +p3)2; m%? My, M3, My ) = r }n—l’»—l—e

Y is the so-called modified Cayley matrix.

Defining ¢;
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we find the n-point integral may be expressed as a sum of (n — 1)-point integrals and an n-point integral close

to six dimensions.
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In this equation L(f) i1s the D = 4 — 2¢ dimensional integral obtained from /,, by removing the propagator

between legs 7 — 1 and ¢



For the case of the box integrals (n = 4) the six-dimensional box is finite so we obtain
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The six dimensional box is finite; if the triangle integrals are known analytically this relation can be verified

numerically as a check of the 4 — 2e-dimensional box integrals.
An approach to calculating the general divergent box integral would be to calculate the most general six-

dimensional box, whose D = 4 — 2e-dimensional counterpart would have a divergence. The integral needed

is IiD:G}(m2 p3, p3, p3; s12, S23,0,m3, m%, m3). The Cayley matrix for this integral is
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